Worksheet 4- Paper 1

Q1.
a) Use first principles to differentiate $f(x)=3-4 x-2 x^{2}$
b) $f(x)=e^{2 x}$, find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$
c) $f(x)=5 \sin 2 x$, find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$

Q2. $y=e^{2 x}$ and $y+\frac{d y}{d x}+\frac{d^{2} y}{d x^{2}}=k e^{2 x}$. Find k.

Q3. $f(x)=3 \cos (2 x+5)$
Show that $f^{\prime \prime}(x)+4 f(x)=0$

Q4. $f(x)=\frac{2}{1-2 x}$
a) Show that $f(x)$ is increasing and has no point of inflection
b) $y=x+c$ is a tangent to $f(x)$. Find 2 possible values for c, c is a real number

Q5. $f(x)=\frac{x}{x-3}, x \in \mathbb{R}, x \neq 3$
Find $f^{\prime}(x)$ and $f^{\prime \prime}(2)$

Q6. Use calculus to find the slopes of the tangents to the circle $x^{2}+y^{2}=25$ at $x=$ -4 . Hence, find the equation of the tangents.

Q7. The volume of a cube is increasing at the rate of $12 \mathrm{~cm}^{3} /$ second. Find the rate of increase of I, the length of the edge of the cube when the volume is $125 \mathrm{~cm}^{3}$.

Q8. A football is travelling along a path y , where $y=x-\frac{x^{2}}{40}, x \geq 0$.
If $\frac{d x}{d t}=10 \sqrt{2}$, find $\frac{d y}{d t}$ when $x=10$.

Q9. $x+y=100$
(i) Prove that the product $P=x y$ is a maximum when $x=y$.
(ii) Find the maximum value of P.

Q10. Find the range of values of x for which $f(x)=x^{3}+3 x^{2}-9 x$ is decreasing

Q11. $f(x)=2 x^{2}-3 x+2 \quad g(x)=x^{2}+x+7$
a) Find the co-ordinates of the point of intersection of $f(x)$ and $g(x)$
b) Find the area of the region enclosed between the two curves

Q12. v=velocity
$v=5 t^{2}+8 t-1$ Find;
a) The distance travelled in terms of t
b) The acceleration after 8 seconds

Q13. $f^{\prime \prime}(x)=15 x-2$,
$f^{\prime}(x)=23$ when $\mathrm{x}=2$ and $\mathrm{y}=19$. Find $f(x)$.

Q14. Find the constant of integration if $\int\left(6 t^{2}+12 t+5\right) d t=9$ when $t=-2$

Q15. Show that $\frac{1}{3} \int_{-2}^{26} \frac{d x}{x+6}=\ln 2$
Q16. Find the area enclosed by $y=x^{2}+1$ and $y=5$

Q17. Find the mean value of $y=\sin x, 0 \leq x \leq \frac{\pi}{2}$

Q18. $y=\frac{\cos x+\sin x}{\cos x-\sin x}$
(i) Find $\frac{d y}{d x}$
(ii) Show that $\frac{d y}{d x}=1+y^{2}$

Q19. Find $\int\left(\sin 2 x+e^{4 x}\right) d x$

Q20. $y=12 x^{3}-48 x^{2}+36 x$
(i) Find the co-ordinates of the 3 points where the curve crosses the x -axis
(ii) Sketch the curve
(iii) Calculate the total area of the region enclosed between the curve and the x -axis

Q21. The equation of a curve is $y=\frac{2}{x-3}$. Prove that no two tangents to the curve are perpendicular to each other.

Q22. Differentiate $\sin \left(3 x^{2}-x\right)$ with respect to x
Q23. The equation of a curve is $x^{2}-y^{2}=25$. Find $\frac{d y}{d x}$ in terms of x and y .
Q24. Find $\int\left(6 x+3+\frac{1}{x^{2}}\right) d x$

Q25. Evaluate $\int_{-\pi / 4}^{\pi / 4} \sin 3 x \sin x d x$

Q26. $f(x)=2 x^{3}+3 x^{2}+b x+c$ has a local maximum at $\mathrm{x}=-2$.
(i) Find the value of b
(ii) Find the range of values of c for which $f(x)=0$ has 3 distinct real roots

Q27. Differentiate $2 x+\sin 2 x$

Q28. Find $\int(2 x+\cos 3 x) d x$

Q29. $f(x)=\log _{e} 3 x-3 x$
(i) Show that $\left(\frac{1}{3},-1\right)$ is a local maximum point of $f(x)$
(ii) Deduce that the graph of $f(x)$ does not intersect the x-axis

Q30. The line $2 x-y-10=0$ is a tangent to the curve $y=x^{2}-9$. The shaded region is bounded by the curve, the line and the x -axis. Calculate the area of this region.

