Worksheet 4- Paper 1

Q1.

a) Use first principles to differentiate $f(x) = 3 - 4x - 2x^2$

b)
$$f(x) = e^{2x}$$
, find $f'(x)$ and $f''(x)$

c)
$$f(x) = 5 \sin 2x$$
, find $f'(x)$ and $f''(x)$

Q2.
$$y = e^{2x}$$
 and $y + \frac{dy}{dx} + \frac{d^2y}{dx^2} = ke^{2x}$. Find k .

Q3.
$$f(x) = 3 \cos(2x + 5)$$

Show that
$$f''(x) + 4f(x) = 0$$

Q4.
$$f(x) = \frac{2}{1-2x}$$

- a) Show that f(x) is increasing and has no point of inflection
- b) y = x + c is a tangent to f(x). Find 2 possible values for c, c is a real number

Q5.
$$f(x) = \frac{x}{x-3}$$
, $x \in \mathbb{R}$, $x \neq 3$

Find f'(x) and f''(2)

Q6. Use calculus to find the slopes of the tangents to the circle $x^2 + y^2 = 25$ at x = -4. Hence, find the equation of the tangents.

Q7. The volume of a cube is increasing at the rate of 12 $cm^3/second$. Find the rate of increase of I, the length of the edge of the cube when the volume is $125 \ cm^3$.

Q8. A football is travelling along a path y, where $y = x - \frac{x^2}{40}$, $x \ge 0$.

If
$$\frac{dx}{dt} = 10\sqrt{2}$$
, find $\frac{dy}{dt}$ when $x = 10$.

Q9.
$$x + y = 100$$

- (i) Prove that the product P=xy is a maximum when x=y.
- (ii) Find the maximum value of P.

Q10. Find the range of values of x for which $f(x) = x^3 + 3x^2 - 9x$ is decreasing

Q11.
$$f(x) = 2x^2 - 3x + 2$$
 $g(x) = x^2 + x + 7$

- a) Find the co-ordinates of the point of intersection of f(x) and g(x)
- b) Find the area of the region enclosed between the two curves

Q12. v=velocity

$$v = 5t^2 + 8t - 1$$
 Find;

- a) The distance travelled in terms of t
- b) The acceleration after 8 seconds

Q13.
$$f''(x) = 15x - 2$$
,

$$f'(x) = 23$$
 when x=2 and y=19. Find $f(x)$.

Q14. Find the constant of integration if $\int (6t^2 + 12t + 5) dt = 9$ when t=-2

Q15. Show that
$$\frac{1}{3} \int_{-2}^{26} \frac{dx}{x+6} = \ln 2$$

Q16. Find the area enclosed by $y = x^2 + 1$ and y=5

Q17. Find the mean value of $y = \sin x$, $0 \le x \le \frac{\pi}{2}$

Q18.
$$y = \frac{\cos x + \sin x}{\cos x - \sin x}$$

- (i) Find $\frac{dy}{dx}$
- (ii) Show that $\frac{dy}{dx} = 1 + y^2$

Q19. Find $\int (\sin 2x + e^{4x}) dx$

$$Q20. y = 12x^3 - 48x^2 + 36x$$

- (i) Find the co-ordinates of the 3 points where the curve crosses the x-axis
- (ii) Sketch the curve
- (iii) Calculate the total area of the region enclosed between the curve and the x-axis

Q21. The equation of a curve is $y = \frac{2}{x-3}$. Prove that no two tangents to the curve are perpendicular to each other.

Q22. Differentiate $sin(3x^2 - x)$ with respect to x

Q23. The equation of a curve is $x^2 - y^2 = 25$. Find $\frac{dy}{dx}$ in terms of x and y.

Q24. Find $\int \left(6x + 3 + \frac{1}{x^2}\right) dx$

Q25. Evaluate $\int_{-\pi/4}^{\pi/4} \sin 3x \sin x \ dx$

Q26. $f(x) = 2x^3 + 3x^2 + bx + c$ has a local maximum at x=-2.

- (i) Find the value of b
- (ii) Find the range of values of c for which f(x) = 0 has 3 distinct real roots

Q27. Differentiate $2x + \sin 2x$

Q28. Find $\int (2x + \cos 3x) dx$

Q29.
$$f(x) = log_e 3x - 3x$$

- (i) Show that $(\frac{1}{3}, -1)$ is a local maximum point of f(x)
- (ii) Deduce that the graph of f(x) does not intersect the x-axis

Q30. The line 2x - y - 10 = 0 is a tangent to the curve $y = x^2 - 9$. The shaded region is bounded by the curve, the line and the x-axis. Calculate the area of this region.

