Algebra, Sequences and Series and Logs

Worksheet 3-Paper 1

Q. 1 Find the sum of the first 100 natural numbers
Q. 2 Using a formula in the maths tables, find the sum of the first n natural numbers and verify your answer by Induction
Q. 3 Write $0 . \dot{3} \dot{6}$ in the form of $\frac{a}{b}$, where $\mathrm{a}, \mathrm{b} \in \mathbb{N}$
Q. 4 What is meant by an irrational number
Q. 5 Simplify a) $\frac{x^{3}-8 y^{3}}{x-2 y}$ b) $\frac{x^{3 / 2}-x^{-1 / 2}}{x^{1 / 2}-x^{-1 / 2}}$
Q. 6 State the factor theorem and explain how you would use it to solve a cubic equation
Q. 7 If $x^{2}+2 a x+a^{2}$ is a factor of $x^{3}+6 k x+k$, show that $a^{2}=-2 k$
Q. 8 Sketch e^{x} and e^{-x} using the same axes and scale
Q. 9 Solve $\log _{2}(x+2)+\log _{2} x=0, x>0$. Leave your answer to three decimal places.
Q. 10 Simplify $\frac{3}{\sqrt{2}-1}$

Q11 Find the sum of all the natural numbers from 101 to 200.
Q12 Prove, De Moivre Theorem, by Induction.
Q13 Prove that $a+a r+a r^{2}+\cdots+a r^{n-1}=\frac{a\left(1-r^{n}\right)}{1-r}$
Q14 Prove, by induction that the sum of the first n odd natural numbers is n^{2}.
Q15 Write $10.5 \dot{1} \mathrm{i}$ in the form of $\frac{a}{b}$, where a and b are natural numbers.
Q16 Evaluate $\lim _{n \rightarrow \infty} \frac{\sqrt{-1+2 n^{2}}}{1+n}$
Q17 $f(x)=2 x-1$ and $g(x)=3 x^{2}$
(i) Find $g f(x)$
(ii) Verify your answer using $x=2$

Q18 Evaluate

(i) $\lim _{x \rightarrow 7} \frac{x^{2}-5 x-14}{x-7}$
(ii) $\lim _{n \rightarrow \infty} \frac{n^{2}+9}{2 n^{2}+9 n}$

Q19 $g(x)=x^{2}-5, \mathrm{x}$ is a real number
(i) Find $g^{-1}(x)$
(ii) Show that $g g^{-1}(x)=x$

Q20 Simplify $\frac{8 x^{3}-27}{2 x-3}$
Q21 Find s_{∞} of $\sum_{n=0}^{\infty}\left(\frac{5}{2 x-1}\right)^{n}$
Q22 Prove, by Induction $x+x^{2}+x^{3}+\cdots x^{n}=\frac{x\left(x^{n}-1\right)}{x-1}, x \neq 1$
Q23 Prove, by Induction $3^{n}>n^{2}, n>1, \mathrm{n}$ is a natural number
Q24
(i) $a, a r, a r^{2} \ldots$ is a geometric sequence. Find an expression for $\mathrm{S}_{2 \mathrm{k}}$
(ii) $\quad b, b r^{2}, b r^{4} \ldots$ is another geometric sequence. Find an expression for S_{k}
(iii) If $\mathrm{S}_{2 \mathrm{k}}=\mathrm{S}_{\mathrm{k}}$, show that $r=\frac{b}{a}-1$

Q25 Write $-x^{2}-12 x+5$ in the form of $p-(x+a)^{2}, a, p$ are real numbers Q26 By completing the square find g^{-1} of $g(x)=x^{2}+6 x+1$ Q27 $f(x)=4 x^{-p}$, find the value of p for which $f\left(x^{-1}\right)=f(x)$, x is a real number Q28 Find the sum of the infinite series,

$$
\sum_{n=0}^{\infty}\left(\frac{3 x}{3 x+4}\right)^{n}, x>0, x \in \mathbb{R}
$$

Q29 Using the same axes and scales, sketch the curve $g(x)=2^{x}$ and $f(x)=\log _{2} x$

Q30
(i) Use the algebra to find the maximum value of $y=-x^{2}-12 x+5$
(ii) Given that $f(x)=-2 x^{2}-16 x+k$ has the same maximum value as y in (i), find the value of k, k is a real number.

