Algebra, Sequences and Series and Logs

Worksheet 3-Paper 1

Q.1 Find the sum of the first 100 natural numbers

Q.2 Using a formula in the maths tables, find the sum of the first n natural numbers and verify your answer by Induction

Q.3 Write 0. 36 in the form of $\frac{a}{b}$, where a, b $\mathcal{E} \mathbb{N}$

Q.4 What is meant by an irrational number

Q.5 Simplify a) $\frac{x^{3}-8y^{3}}{x-2y}$ b) $\frac{x^{3/2}-x^{-1/2}}{x^{1/2}-x^{-1/2}}$

Q.6 State the factor theorem and explain how you would use it to solve a cubic equation

Q.7 If $x^2 + 2ax + a^2$ is a factor of $x^3 + 6kx + k$, show that $a^2 = -2k$

Q.8 Sketch e^x and e^{-x} using the same axes and scale

Q.9 Solve $log_2(x + 2) + log_2 x = 0$, x > 0. Leave your answer to three decimal places.

Q.10 Simplify $\frac{3}{\sqrt{2}-1}$

Q11 Find the sum of all the natural numbers from 101 to 200.

Q12 Prove, De Moivre Theorem, by Induction.

Q13 Prove that $a + ar + ar^2 + \dots + ar^{n-1} = \frac{a(1-r^n)}{1-r}$

Q14 Prove, by induction that the sum of the first n odd natural numbers is n^2 .

Q15 Write $10.\dot{5}\dot{1}$ in the form of $\frac{a}{b}$, where a and b are natural numbers.

Q16 Evaluate $\lim_{n \to \infty} \frac{\sqrt{-1+2n^2}}{1+n}$ Q17 f(x) = 2x - 1 and $g(x) = 3x^2$

(i) Find
$$gf(x)$$

(ii) Verify your answer using x = 2

Q18 Evaluate

(i)
$$\lim_{x \to 7} \frac{x^2 - 5x - 14}{x - 7}$$

(ii) $\lim_{n \to \infty} \frac{n^2 + 9}{2n^2 + 9n}$

Q19 $g(x) = x^2 - 5$, x is a real number

- (i) Find $g^{-1}(x)$
- (ii) Show that $gg^{-1}(x) = x$

Q20 Simplify $\frac{8x^3-27}{2x-3}$

Q21 Find s_{∞} of $\sum_{n=0}^{\infty} \left(\frac{5}{2x-1}\right)^n$

Q22 Prove, by Induction $x + x^2 + x^3 + \dots x^n = \frac{x(x^{n-1})}{x^{-1}}, x \neq 1$

Q23 Prove, by Induction $3^n > n^2$, n > 1, n is a natural number

Q24

- (i) a, ar, ar^2 ... is a geometric sequence. Find an expression for S_{2k}
- (ii) b, br^2, br^4 ... is another geometric sequence. Find an expression for S_k
- (iii) If $S_{2k}=S_k$, show that $r=\frac{b}{a}-1$

Q25 Write $-x^2 - 12x + 5$ in the form of $p - (x + a)^2$, *a*, *p* are real numbers

Q26 By completing the square find g^{-1} of $g(x) = x^2 + 6x + 1$

Q27 $f(x) = 4x^{-p}$, find the value of p for which $f(x^{-1}) = f(x)$, x is a real number

Q28 Find the sum of the infinite series,

$$\sum_{n=0}^{\infty} \left(\frac{3x}{3x+4}\right)^n, x > 0, x \in \mathbb{R}$$

Q29 Using the same axes and scales, sketch the curve $g(x) = 2^x$ and $f(x) = \log_2 x$

- (i) Use the algebra to find the maximum value of $y = -x^2 12x + 5$
- (ii) Given that $f(x) = -2x^2 16x + k$ has the same maximum value as y in (i), find the value of k, k is a real number.