Algebra 10: Generating polynomial equations

LEARNING WORK:

Figure 1: Generic shape of positive Quadratic curve

Figure 2: Generic shape of negative Quadratic curve

Figure 1: Generic shape of positive Cubic curve

Figure 2: Generic shape of negative Cubic curve

Prerequisite Knowledge:

- Algebra 8

- Algebra 9

Tips for students:

- Once we have multiplied the factors by each other we must ensure the constant in our equation corresponds to the to the y-intercept of the curve.
- If the highest power of x is n, the polynomial has ($n-1$) turning point and n roots
E.g. if the highest power of x is 3 . The polynomial has 2 turning points and 3 roots etc

Example 1

A cubic curve has roots $x=2, x=-1$ and $x=3$

1. If the curve cuts the y-axis at the point $(0,6)$, write the curve in the form $a x^{3}+b x^{2}+c x+d=0$
2. Hence, sketch the curve

Example 2

Write the following curve in the form $a x^{3}+b x^{2}+c x+d=0$

Questions for class

Question 1

Write the following curve in the form $a x^{3}+b x^{2}+c x+d$

Question 2

Write the following curve in the form $a x^{3}+b x^{2}+c x+d=0$

Questions from GKTuition tutorials

Example 1

A cubic curve has roots $x=2, x=-1$ and $x=-3$

1. If the curve cuts the y-axis at the point $(0,-6)$, write the curve in the form $a x^{3}+b x^{2}+c x+d=0$
2. Hence, sketch the curve

Example 2

Write the following curve in the form $a x^{3}+b x^{2}+c x+d=0$

Example 3

Write the following curve in the form $a x^{4}+b x^{3}+c x^{2}+d x+e=0$

Questions from GKTuition tutorials

Question 1
Write the following curve in the form $a x^{3}+b x^{2}+c x+d=0$

